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Scenario

e Given a deployed model and a test input x* we wish to:

e Obtain a prediction
e Obtain a measure of uncertainty in prediction

e Take action based estimate of uncertainty

* Reject prediction / stop decoding sentence
e Ask for human intervention
e Use active learning
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Applications of Uncertainty Estimation

¢ Uncertainty should be assessed in the context of an application

Threshold-based outlier detection —
e Misclassification Detection [Hendrycks and Gimpel, 2016]
¢ QOut-of-distribution input Detection [Malinin and Gales, 2019]
e Adversarial Attack Detection [Malinin and Gales, 2019]

o Active Learning [Gal, 2016]
* Reinforcement Learning uncertainty-driven exploration [Osband et al., 2016]

e Other...

AMRIDGE Yandex Research



Assessment of Uncertainty Quality

¢ Uncertainty should be assessed in the context of an application

Threshold-based outlier detection —
e Misclassification Detection [Hendrycks and Gimpel, 2016]
¢ Out-of-distribution input Detection [Malinin and Gales, 2019]
e Adversarial Attack Detection [Malinin and Gales, 2019]

o Active Learning [Gal, 2016]
* Reinforcement Learning uncertainty-driven exploration [Osband et al., 2016]

e Other...
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Sources of Uncertainty
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(a) Data Uncertainty (b) Data Sparsity (c) Out-of-Distribution inputs

» Knowledge (epistemic) uncertainty refers to both:
e Data Sparsity and Out-of-distribution inputs
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Sources of Uncertainty
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(a) Data Uncertainty

(b) Knowledge Uncertainty

» Knowledge (epistemic) uncertainty refers to both:
e Data Sparsity and Knowledge Uncertainty
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Data (Aleatoric) Uncertainty
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Data Uncertainty
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Data Uncertainty

e Distinct Classes

e Overlapping Classes
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Data Uncertainty

e Data Uncertainty — Known-Unknown
e Uncertainty due to properties of data

e Class overlap (complexity of decision boundaries)
e Human labelling error
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Data Uncertainty

e Data Uncertainty is the entropy of the true data distribution —

H[Pir(y|x™)] Z Pir(y = we|x™) InPir(y = we|x™)

e Captured by the entropy of a model's posterior over classes —

K
HIP(y[x*,0)] = — D P(y = wc|x*,0) InP(y = wc|x*, 0)
c=1

e Data Uncertainty is captured as a consequence of Maximum Likelihood Estimation
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Sources of Uncertainty

15 5 .
0 10

5 5 . Q

) 0 e

-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20

(a) Data Uncertainty (b) Data Sparsity (c) Out-of-Distribution inputs

» Knowledge (epistemic) uncertainty refers to both:
e Data Sparsity and Out-of-distribution inputs

OANERSITY O Yandex Research



Knowledge Uncertainty
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Knowledge Uncertainty - Out-of-Distribution

e Unseen classes
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e Unseen variations of seen classes
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Sources of Uncertainty

e Data Uncertainty — Known-Unknown

e Class overlap (complexity of decision boundaries)
e Human labelling error

e Knowledge Uncertainty — Unknown-Unknown
e Test input in out-of-distribution region far from training data

e Appropriate action depends on source of uncertainty

e Separating sources of uncertainty requires Ensemble approaches
e ... or Prior Networks
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Ensemble Approaches

 Uncertainty in @ captured by model posterior p(0|D) —

p(D|6)p(6)

p(0|D) = o(D)

* Bayesian inference of P(y|x*,0) —

P(y|x*, D) = Ep(e\p) [P(y[x",0)]

e Can consider an ensemble of models —

{P(y|x*, 0™ M_,. 6™ ~ p(6]D)

» Choose desired behaviour of ensemble via prior p(8)
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Total Uncertainty

« Consider the entropy of the predictive posterior P(y|x*, D) —

H[P(y|x*, D)] = H[E,g/p)[P(v]x".0)]

%

1 M
H[: > Pylx 80)], ™) ~ p(6]D)
m=1

e Measure of Total Uncertainty
e Combination of Data uncertainty and Knowledge uncertainty
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Expected Data Uncertainty

6™ ~ p(6|D)

o Each model P(y|x*,8(™) captures an different estimate of data uncertainty.

o Lets consider an ensemble of models  {P(y|x*, (™)} M 1>

e Ensemble estimate of data uncertainty — Expected Data Uncertainty

M
E,0m)[HIP(yIx", 0)] Z [P(y|x*,6(™)], 8™ ~ p(8|D)

* Not the same as entropy of the predictive posterior P(y|x*, D)
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Model Uncertainty

e If the predictions from the models are consistent

HIE, 0,0 P(yIx", 0)]] — E, g p) [HIP(y|x", 0)]] = O

Total Uncertainty Expected Data Uncertainty

e If the predictions from the models are diverse

HIE,0p) [Py X", 0)]] — By g p) [HIP(vX", 0)] > O

Total Uncertainty Expected Data Uncertainty

e Difference of the two is a measure of model uncertainty

Il 01x", D] = HIE, g, [PlyIx",0)]] — E, g/ [HIP(v|x", O)]

Model Uncertainty

Total Uncertainty Expected Data Uncertainty
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Model Uncertainty — Knowledge Uncertainty

e If the predictions from the models are consistent

HIE, 0,0 P(yIx",0)]] — E, g p) [HIP(y|x", 0)]] = O

Total Uncertainty Expected Data Uncertainty

e If the predictions from the models are diverse

H [Ep(0|D) [P(y|x*, 0)]] - ]Ep(0|D) [H[P(Y|X*7 9)” > 0

Total Uncertainty Expected Data Uncertainty

e Difference of the two is a measure of knowledge uncertainty

Tly, 6% D] = H[E, 9 PUyIx", )] ~ Eyipym) HIP(YIX",O)]

Knowledge Uncertainty

Total Uncertainty Expected Data Uncertainty
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Ensemble for certain in-domain input
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Ensemble for uncertain in-domain input
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Ensemble for Out-of-Domain input
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Distributions on a Simplex

o Ensemble {P(y|x*, 8(™)}M__ can be visualized on a simplex for an input x*

(a) Confident (b) Data Uncertainty (c) Knowledge Uncertainty
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Approximate Inference

e ldeally - compute all measures of uncertainty in closed form...

e But inference is intractable for neural networks
e Bayes' Rule is intractable for neural networks

e Solutions — use approximate inference
e Compute approximate posterior q(0) =~ p(6|D)
e Use variational approximations to measures of uncertainty
e Use Monte-Carlo approximations to measures of uncertainty
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Approximate Inference

e Variational Inference:

e Bayes by Backprop [Blundell et al., 2015]
* Probabalistic Backpropagation [Herndndez-Lobato and Adams, 2015]

¢ Monte-Carlo Methods:

e Monte-Carlo Dropout [Gal, 2016, Gal and Ghahramani, 2016]

e Stochastic Gradient Langevin Dynamics [Welling and Teh, 2011]

¢ Fast-Ensembling via Mode Connectivity [Garipov et al., 2018]

* Stochastic Weight Averaging Gaussian (SWAG) [Maddox et al., 2019]

e Non-Bayesian Ensembles:

e Bootstrap DQN [Osband et al., 2016]
e Deep Ensembles [Lakshminarayanan et al., 2017]
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« Hard to guarantee diverse {P(y|x*,8(™)}M_. for OOD x*
e Diversity of ensemble depends on:

e Selection of prior

e Nature of approximations
* Architecture of network

e Properties and size of data

e May be computationally expensive
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Distributions on a Simplex

o Ensemble {P(y|x*,8(™)}M_ can be visualized on a simplex

/\ /2

\ [N

/ [

(a) Confident (b) Data Uncertainty (c) Knowledge Uncertainty

e Same as sampling from implicit Distribution over output Distributions

P(y|x*, 0(™) ~ p(8]D) = u{™ ~ p(u|x*, D)
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Distributions on a Simplex (cont)

P(y = w1)
. P(y = w2) o .
o Expanding out p(™ = . , where each (™ is a point on a simplex.
P(y = wK)
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Distribution over Distributions

ORI (b) p(ulx*, D)
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Distribution over Distributions

ORI (b) p(ulx*, D)
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Distribution over Distributions

() {nMn, (b) p(ulx*, D)
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Prior Networks [Malinin and Gales, 2018]

o Explicitly model p(p|x*, D) using a Prior Network p(p|x*; 6)

p(u|x*; 0) ~ p(p|x*, D)

e Predictive posterior distribution is given by expected categorical

P(y|x*;0) = E A =i
YIx50)=E g POIR)] =2
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Prior Networks [Malinin and Gales, 2018]

o Construct p(p|x*, ) to emulate ensemble

(a) Certain (b) Data Uncertainty (c) Knowledge Uncertainty
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Distributions over Distributions via Prior Networks
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Distributions over Distributions via Prior Networks
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Distributions over Distributions via Prior Networks
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Uncertainty Measures for Prior Networks [Malinin and Gales, 2018]

e Ensemble uncertainty decomposition:

Zly, 61x". D] = HIE, 9y [PyIx",O)l] ~ Epy ) [HIP(yIx" O)]

Model Uncertainty

Total Uncertainty Expected Data Uncertainty

e Prior Network uncertainty decomposition

Iy, ulx*; 0] = H[E ~ [P —E A [H[P
[y, ul ]' E pxe PO —E o g [RPOIR]
Knowledge Uncertainty Total Uncertainty Expected Data Uncertainty
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Prior Networks vs. Ensembles [Malinin and Gales, 2018]

 Behaviour of Ensemble distribution over distributions
 Controlled via prior p(@) and inference scheme

e Behaviour of Prior Networks distribution over distributions
e Controlled via loss function and training data D

UNIVERSITY OF

AMBRIDGE Yandex Research



Prior Network Construction [Malinin and Gales, 2018]

e A Prior Network parametrizes the Dirichlet Distribution
p(u/x*;6) = Dir(pla), a= F(x*;6)

e Dirichlet Distribution — Distribution over simplex

e Conjugate prior to categorical distribution
e Convenient properties — analytically tractable
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Reminder - Dirichlet Distribution

e Dirichlet is a distribution over categorical distributions

K
Dir(pla) = H F(a y L H aely ap = Zac
c=1 c c=1

e Parameterised by concentration parameters: o, a. > 0
e Expected label posteriors given by

Q¢

- =K
2 k=1 Ok
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Prior Network Construction [Malinin and Gales, 2018]

E(Ov D) - Ein(gy Dtrn) + 7 : [’out(aa Dout)
N———— N————r’

In Domain Loss OOD Loss

(a) In-Domain Target (b) OOD Target
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Target Concentration Parameters [Malinin and Gales, 2018]

« To train the prior network we need a target distribution p(u|8) for x()
e We want training data {ﬁ(i),x(i)},’-\’zl
. but have training data {y(), x(DIN where y() € {wy,... ,wk}

e Solution — specify concentration parameters B(°) as a function of target class y

p(p|Bl?)) = Dir(u|Bl?))

o Need B to yield correct class
* Need ,B(C) to reflect “confidence” in sample
° By >0Vk
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Target Concentration Parameters [Malinin and Gales, 2018]

e Consider setting B(9) as follows —

() [ B+1 ifc=k
57 =1{1 if ¢+ k

If 5 is large —
e Sharp Dirichlet at corner of simplex corresponding to target class.
If B is low —
e Wide Dirichlet with the mode near the corner corresponding to target class.
e If 3 is zero —
e Flat (uniform) Dirichlet distribution.
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Target Concentration Parameters [Malinin and Gales, 2018]

() =0
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KL-divergence Losses

¢ We can consider two loss functions - Forward KL-Divergence —

K
LKy, x,0;8) = Y I(y = we) - KL[Dir(p] B)|[p(

c=1

)

e ... or reverse KL-Divergence —

LREL(y X, 8; 8) = ZI ) - KL[p(p|x; 0)||Dir (| B())]
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Reminder - Kullback-Leibler Divergence

e Standard “measure” between distributions

KL[Pex (v [X)[[P(y|x; 0)] = Ee,, (y1x) [ In Pex(y[x) — InP(y|x; 0)]

e Variational optimization often yields reverse KL for training
KLIP(y1x: 6)[Pex ()] = Ep, ., [ INP(y1x: 8) = In Py (y[x)

e Measures have different properties —

e Forward KL is zero-avoiding
e Reverse KL is zero-forcing
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Forward KL-divergence Loss [Malinin and Gales, 2018]

* Consider expectation of forward KL-div loss wrt. empirical distribution p(x,y) —

K

£540: ) = Ep. (x.)| 3 Z(y = we) - KL[Dir(u] ) [p(px: 0)]]
c=1

K
Epeu()| 2 Bs.yx)[Z(y = we)] - KLDir (1] 81| [p(pa]x: 0)]]
c=1

K
Epu () [KL[ Y Pex(y = we) - Dir(u| )] [p(ulx; 0)]] + C

c=1

e Target distribution becomes a mixture of Dirichlets!
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Forward KL-divergence Loss [Malinin and Gales, 2018]

e Target distribution becomes a mixture of Dirichlets!

(a) Indueced Target (b) Model (c) Want
e Forward KL-divergence is zero avoiding — Model will try to cover each model!
e Leads to undesired behaviour — bad performance!

e Doesn’t scale to datasets with more than 10 classes!

NIVERSITY OF

AMBRIDGE Yandex Research



Reverse KL-divergence Loss [Malinin and Gales, 2019]

« Consider expectation of reverse KL-div loss wrt. empirical distribution p(x,y) —

K
LFE(6; B) = Eg,,(x) ZP (Y = we|X)KL [p(p|x; O)HDiT(MW(C))H

= Bou () | Ep(uix;0) [ InP(k]x; 0) — In H Dir(p|Ble))P=0r= ”C‘X)]}
c=1
K

Eg,. (x) [KL[p(p]x; 0)||Dix (1 Z (v = welx) - BN)] + €

e Expectation induces product of target Dirichlet distributions.
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Reverse KL-divergence Loss [Malinin and Gales, 2019]

e Expectation induces product of target Dirichlet distributions

K
LRRU: ) = Ep,. ) [KL[p(1lx: 0) [D3x(1] D Prxly = welx) - 8] ] + €
c=1

e Target becomes a uni-modal Dirichlet distribution at appropriate location!

(a) Induced Target (b) Model
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Prior Network Construction

* Reverse KL loss LRKL(0, D; 3) — full control over behaviour of model!

E(é), D; Biny /Bouty 7) :»Cﬁ;KL(aa Dirn; ,Bin) + - £§£ (07 Dout; ﬁout)

(a) In-Domain Target (b) OOD Target

e But how to obtain out-of-domain training data D7

e Use a different dataset or adversarial attacks
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Prior Network Construction

 Out-of-domain (OOD) training data must be on boundary on in-domain region —

* Too loose — Some OOD might be considered in-domain
e Too tight — Some in-domain might be considered OOD

(a) Too Loose (b) Too Tight (c) Good
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Prior Networks trained with forward KL-divergence loss on
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Prior Networks trai reverse KL-divergence loss on Artif
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Classification Error Rate

Dataset DNN PN-KL PN-RKL ‘ Ensemble
CIFAR-10 8.0 14.7 7.5 6.6
CIFAR-100 30.4 - 28.1 26.9
TinylmageNet | 41.7 - 40.3 36.9
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Out-of-Distribution Detection

Model | CIFAR-10/CIFAR-100 | CIFAR-100/TinylmageNet
| SYHN LSUN  TinylmageNet | SVHN LSUN  CIFAR-10
Ensemble | 895  93.2 90.3 789 856 76.5
PN-KL 97.8 916 92.4 - - -
PN-RKL | 98.2 95.7 95.7 84.8 100.0 578

Table: Out-of-domain detection results (mean % AUROC across 10 rand. inits).
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Adversarial Attack Detection

e Adversarial Attacks — Small perturbation of the input x* which affects prediction

e Exist for many modalities — images, text and audio
e Transferable between models
e Can be deployed in real world.

e Adversarial Attacks are a security concern!
e Detect using measures of uncertainty?
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rsarial Attack Generation

e Adversarial attacks: generate sample X:

1. swaps to target class @
2. requires minimum changes to original sample x

e Requirements expressed as

Aaav(x,0) = arg _min {L(y =&,X, é)} D 0(x,X) <€
XeRP

e ¢ is number of swapped bits (for images)
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Manifold Interpretation of Adversarial Attacks

* In-Domain Images
+ On-manifold Out-of-Domain Images
* On-manifold Adversarial Images

« » « Off-manifold Adversarial Images




Adversarial Attack Detection

e Consider an uncertainty based detection scheme:
1, T>H(x

Ir(x) = <o, T < H(x
0, x=10

)
)

o Successful attacks are able to :
e Both affect prediction and avoid detection.

e Can assess using false positive and true positives:

1N
= NZIT(X,'), fo(T) ZZT adv(Xi, wr))
i=1

¢ Joint Success Rate is where t,(T) = f,(T)
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sarial Attack Detection via Prior Networks

e Prior Networks yield rich measures of uncertainty

e Greatly constrain space of successful adaptive attacks

e Confidence — constraint on max logit

e Total Uncertainty — constraint on relative of magnitude of logits

e Knowledge Uncertainty — constraint on relative and absolute magnitude of logits
e .. and attack must also affect predicted class!

e Explicit control behaviour via training data —
e Further constrain space of successful adversarial solutions
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Prior Network Adversarial Training

E(ey D; Bnata /Badv) 255‘5"(9, Dirn; Bnat = 162) + - 555}(9; Daav; Badv = ]-)

(a) Natural Target (b) Adversarial Target

e Standard adversarial training —
e Correct Prediction for adversarial inputs

e Prior Network adversarial training —
e Correct Prediction + High Uncertainty for adversarial inputs
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e Baselines: MC-Dropout and Standard Adversarial Training

e Prior Network adversarial traning — 1-step FGSM attacks

e Evaluation Attack — strong adaptive whitebox PGD-MIM attack
Datasets: CIFAR10 and CIFAR100
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Joint Success Rate - CIFAR10
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Joint Success Rate - CIFAR100
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Thank You!

Any questions?
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