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Scenario

∙ Given a deployed model and a test input x* we wish to:
∙ Obtain a prediction
∙ Obtain a measure of uncertainty in prediction

∙ Take action based estimate of uncertainty
∙ Reject prediction / stop decoding sentence
∙ Ask for human intervention
∙ Use active learning
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Applications of Uncertainty Estimation

∙ Uncertainty should be assessed in the context of an application
∙ Threshold-based outlier detection →

∙ Misclassification Detection [Hendrycks and Gimpel, 2016]
∙ Out-of-distribution input Detection [Malinin and Gales, 2019]
∙ Adversarial Attack Detection [Malinin and Gales, 2019]

∙ Active Learning [Gal, 2016]
∙ Reinforcement Learning uncertainty-driven exploration [Osband et al., 2016]
∙ Other...
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Assessment of Uncertainty Quality

∙ Uncertainty should be assessed in the context of an application
∙ Threshold-based outlier detection →

∙ Misclassification Detection [Hendrycks and Gimpel, 2016]
∙ Out-of-distribution input Detection [Malinin and Gales, 2019]
∙ Adversarial Attack Detection [Malinin and Gales, 2019]

∙ Active Learning [Gal, 2016]
∙ Reinforcement Learning uncertainty-driven exploration [Osband et al., 2016]
∙ Other...
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Sources of Uncertainty

(a) Data Uncertainty (b) Data Sparsity (c) Out-of-Distribution inputs

∙ Knowledge (epistemic) uncertainty refers to both:
∙ Data Sparsity and Out-of-distribution inputs
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Data (Aleatoric) Uncertainty
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Data Uncertainty

12/79



Data Uncertainty
∙ Distinct Classes

∙ Overlapping Classes
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Data Uncertainty

∙ Data Uncertainty → Known-Unknown
∙ Uncertainty due to properties of data

∙ Class overlap (complexity of decision boundaries)
∙ Human labelling error
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Data Uncertainty

∙ Data Uncertainty is the entropy of the true data distribution →

ℋ[Ptr(y |x*)] = −
K∑︁

c=1
Ptr(y = 𝜔c |x*) ln Ptr(y = 𝜔c |x*)

∙ Captured by the entropy of a model’s posterior over classes →

ℋ[P(y |x*, 𝜃)] = −
K∑︁

c=1
P(y = 𝜔c |x*, 𝜃) ln P(y = 𝜔c |x*, 𝜃)

∙ Data Uncertainty is captured as a consequence of Maximum Likelihood Estimation
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Sources of Uncertainty

(a) Data Uncertainty (b) Data Sparsity (c) Out-of-Distribution inputs

∙ Knowledge (epistemic) uncertainty refers to both:
∙ Data Sparsity and Out-of-distribution inputs
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Knowledge Uncertainty
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Knowledge Uncertainty - Out-of-Distribution

∙ Unseen classes

∙ Unseen variations of seen classes
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Sources of Uncertainty

∙ Data Uncertainty → Known-Unknown
∙ Class overlap (complexity of decision boundaries)
∙ Human labelling error

∙ Knowledge Uncertainty → Unknown-Unknown
∙ Test input in out-of-distribution region far from training data

∙ Appropriate action depends on source of uncertainty
∙ Separating sources of uncertainty requires Ensemble approaches
∙ ... or Prior Networks
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Ensemble Approaches

∙ Uncertainty in 𝜃 captured by model posterior p(𝜃|𝒟) →

p(𝜃|𝒟) = p(𝒟|𝜃)p(𝜃)
p(𝒟)

∙ Bayesian inference of P(y |x*, 𝜃) →

P(y |x*, 𝒟) = Ep(𝜃|𝒟)
[︀
P(y |x*, 𝜃)

]︀
∙ Can consider an ensemble of models →

{P(y |x*, 𝜃(m))}M
m=1, 𝜃(m) ∼ p(𝜃|𝒟)

∙ Choose desired behaviour of ensemble via prior p(𝜃)
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Total Uncertainty

∙ Consider the entropy of the predictive posterior P(y |x*, 𝒟) →

ℋ
[︀
P(y |x*, 𝒟)

]︀
= ℋ

[︀
Ep(𝜃|𝒟)[P(y |x*, 𝜃)]

]︀
≈ ℋ

[︁ 1
M

M∑︁
m=1

P(y |x*, 𝜃(m))
]︁
, 𝜃(m) ∼ p(𝜃|𝒟)

∙ Measure of Total Uncertainty
∙ Combination of Data uncertainty and Knowledge uncertainty
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Expected Data Uncertainty

∙ Lets consider an ensemble of models {P(y |x*, 𝜃(m))}M
m=1, 𝜃(m) ∼ p(𝜃|𝒟)

∙ Each model P(y |x*, 𝜃(m)) captures an different estimate of data uncertainty.

∙ Ensemble estimate of data uncertainty → Expected Data Uncertainty

Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
≈ 1

M

M∑︁
m=1

ℋ
[︀
P(y |x*, 𝜃(m))

]︀
, 𝜃(m) ∼ p(𝜃|𝒟)

∙ Not the same as entropy of the predictive posterior P(y |x*, 𝒟)
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Model Uncertainty

∙ If the predictions from the models are consistent

ℋ
[︀
Ep(𝜃|𝒟)[P(y |x*, 𝜃)]

]︀
⏟  ⏞  

Total Uncertainty

−Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
⏟  ⏞  
Expected Data Uncertainty

= 0

∙ If the predictions from the models are diverse

ℋ
[︀
Ep(𝜃|𝒟)[P(y |x*, 𝜃)]

]︀
⏟  ⏞  

Total Uncertainty

−Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
⏟  ⏞  
Expected Data Uncertainty

> 0

∙ Difference of the two is a measure of model uncertainty

ℐ[y , 𝜃|x*, 𝒟]⏟  ⏞  
Model Uncertainty

= ℋ
[︀
Ep(𝜃|𝒟)[P(y |x*, 𝜃)]

]︀
⏟  ⏞  

Total Uncertainty

−Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
⏟  ⏞  
Expected Data Uncertainty
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Model Uncertainty → Knowledge Uncertainty

∙ If the predictions from the models are consistent

ℋ
[︀
Ep(𝜃|𝒟)[P(y |x*, 𝜃)]

]︀
⏟  ⏞  

Total Uncertainty

−Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
⏟  ⏞  
Expected Data Uncertainty

= 0

∙ If the predictions from the models are diverse

ℋ
[︀
Ep(𝜃|𝒟)[P(y |x*, 𝜃)]

]︀
⏟  ⏞  

Total Uncertainty

−Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
⏟  ⏞  
Expected Data Uncertainty

> 0

∙ Difference of the two is a measure of knowledge uncertainty

ℐ[y , 𝜃|x*, 𝒟]⏟  ⏞  
Knowledge Uncertainty

= ℋ
[︀
Ep(𝜃|𝒟)[P(y |x*, 𝜃)]

]︀
⏟  ⏞  

Total Uncertainty

−Ep(𝜃|𝒟)
[︀
ℋ[P(y |x*, 𝜃)]

]︀
⏟  ⏞  
Expected Data Uncertainty
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Ensemble for certain in-domain input

26/79



Ensemble for uncertain in-domain input
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Ensemble for Out-of-Domain input
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Distributions on a Simplex

∙ Ensemble {P(y |x*, 𝜃(m))}M
m=1 can be visualized on a simplex for an input x*

(a) Confident (b) Data Uncertainty (c) Knowledge Uncertainty
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Approximate Inference

∙ Ideally - compute all measures of uncertainty in closed form...
∙ But inference is intractable for neural networks
∙ Bayes’ Rule is intractable for neural networks

∙ Solutions → use approximate inference
∙ Compute approximate posterior q(𝜃) ≈ p(𝜃|𝒟)
∙ Use variational approximations to measures of uncertainty
∙ Use Monte-Carlo approximations to measures of uncertainty
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Approximate Inference

∙ Variational Inference:
∙ Bayes by Backprop [Blundell et al., 2015]
∙ Probabalistic Backpropagation [Hernández-Lobato and Adams, 2015]

∙ Monte-Carlo Methods:
∙ Monte-Carlo Dropout [Gal, 2016, Gal and Ghahramani, 2016]
∙ Stochastic Gradient Langevin Dynamics [Welling and Teh, 2011]
∙ Fast-Ensembling via Mode Connectivity [Garipov et al., 2018]
∙ Stochastic Weight Averaging Gaussian (SWAG) [Maddox et al., 2019]

∙ Non-Bayesian Ensembles:
∙ Bootstrap DQN [Osband et al., 2016]
∙ Deep Ensembles [Lakshminarayanan et al., 2017]
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Limitations

∙ Hard to guarantee diverse {P(y |x*, 𝜃(m))}M
m=1 for OOD x*

∙ Diversity of ensemble depends on:
∙ Selection of prior
∙ Nature of approximations
∙ Architecture of network
∙ Properties and size of data

∙ May be computationally expensive
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Distributions on a Simplex

∙ Ensemble {P(y |x*, 𝜃(m))}M
m=1 can be visualized on a simplex

(a) Confident (b) Data Uncertainty (c) Knowledge Uncertainty

∙ Same as sampling from implicit Distribution over output Distributions

P(y |x*, 𝜃(m)) ∼ p(𝜃|𝒟) ≡ 𝜇(m) ∼ p(𝜇|x*, 𝒟)
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Distributions on a Simplex (cont)

∙ Expanding out 𝜇(m) =

⎡⎢⎢⎢⎢⎣
P(y = 𝜔1)
P(y = 𝜔2)

...
P(y = 𝜔K )

⎤⎥⎥⎥⎥⎦, where each 𝜇(m) is a point on a simplex.
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Distribution over Distributions

(a) {𝜇(m)}M
m=1 (b) p(𝜇|x*, 𝒟)
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(a) {𝜇(m)}M
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Prior Networks [Malinin and Gales, 2018]

∙ Explicitly model p(𝜇|x*, 𝒟) using a Prior Network p(𝜇|x*; 𝜃)

p(𝜇|x*; 𝜃) ≈ p(𝜇|x*, 𝒟)

∙ Predictive posterior distribution is given by expected categorical

P(y |x*; 𝜃) = E
p(𝜇|x*;𝜃)

[︀
p(y |𝜇)

]︀
= 𝜇̂
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Prior Networks [Malinin and Gales, 2018]

∙ Construct p(𝜇|x*, 𝜃) to emulate ensemble

(a) Certain (b) Data Uncertainty (c) Knowledge Uncertainty
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Distributions over Distributions via Prior Networks
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Distributions over Distributions via Prior Networks
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Uncertainty Measures for Prior Networks [Malinin and Gales, 2018]

∙ Ensemble uncertainty decomposition:

ℐ[y , 𝜃|x*, 𝒟]⏟  ⏞  
Model Uncertainty

= ℋ[Ep(𝜃|𝒟)[P(y |x*, 𝜃)]]⏟  ⏞  
Total Uncertainty

−Ep(𝜃|𝒟)[ℋ[P(y |x*, 𝜃)]]⏟  ⏞  
Expected Data Uncertainty

∙ Prior Network uncertainty decomposition

ℐ[y , 𝜇|x*; 𝜃]⏟  ⏞  
Knowledge Uncertainty

= ℋ
[︀
E

p(𝜇|x*;𝜃)
[P(y |𝜇)]

]︀
⏟  ⏞  

Total Uncertainty

−E
p(𝜇|x*;𝜃)

[︀
ℋ[P(y |𝜇)]

]︀
⏟  ⏞  
Expected Data Uncertainty
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Prior Networks vs. Ensembles [Malinin and Gales, 2018]

∙ Behaviour of Ensemble distribution over distributions
∙ Controlled via prior p(𝜃) and inference scheme

∙ Behaviour of Prior Networks distribution over distributions
∙ Controlled via loss function and training data 𝒟
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Prior Network Construction [Malinin and Gales, 2018]

∙ A Prior Network parametrizes the Dirichlet Distribution

p(𝜇|x*; 𝜃) = Dir(𝜇|𝛼), 𝛼 = f (x*; 𝜃)

∙ Dirichlet Distribution → Distribution over simplex
∙ Conjugate prior to categorical distribution
∙ Convenient properties → analytically tractable
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Reminder - Dirichlet Distribution

∙ Dirichlet is a distribution over categorical distributions

Dir(𝜇|𝛼) = Γ(𝛼0)∏︀K
c=1 Γ(𝛼c)

K∏︁
c=1

𝜋𝛼c−1
c ; 𝛼0 =

K∑︁
c=1

𝛼c

∙ Parameterised by concentration parameters: 𝛼, 𝛼c > 0
∙ Expected label posteriors given by

P̂(y = 𝜔c) = 𝜇̂c = 𝛼c∑︀K
k=1 𝛼k
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Prior Network Construction [Malinin and Gales, 2018]

ℒ(𝜃, 𝒟) = ℒin(𝜃, 𝒟trn)⏟  ⏞  
In Domain Loss

+ 𝛾 · ℒout(𝜃, 𝒟out)⏟  ⏞  
OOD Loss

(a) In-Domain Target (b) OOD Target
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Target Concentration Parameters [Malinin and Gales, 2018]

∙ To train the prior network we need a target distribution p(𝜇|𝛽) for x(i)

∙ We want training data {𝛽(i), x(i)}N
i=1

∙ ... but have training data {y (i), x(i)}N
i=1, where y (i) ∈ {𝜔1, . . . , 𝜔K }

∙ Solution → specify concentration parameters 𝛽(c) as a function of target class y

p(𝜇|𝛽(c)) = Dir(𝜇|𝛽(c))

∙ Need 𝛽(c) to yield correct class
∙ Need 𝛽(c) to reflect “confidence” in sample
∙ 𝛽k > 0 ∀k
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Target Concentration Parameters [Malinin and Gales, 2018]

∙ Consider setting 𝛽(c) as follows →

𝛽
(c)
k =

{︁ 𝛽 + 1 if c = k
1 if c ̸= k

∙ If 𝛽 is large →
∙ Sharp Dirichlet at corner of simplex corresponding to target class.

∙ If 𝛽 is low →
∙ Wide Dirichlet with the mode near the corner corresponding to target class.

∙ If 𝛽 is zero →
∙ Flat (uniform) Dirichlet distribution.
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Target Concentration Parameters [Malinin and Gales, 2018]

(c) 𝛽 = 30 (d) 𝛽 = 2 (e) 𝛽 = 0
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KL-divergence Losses

∙ We can consider two loss functions - Forward KL-Divergence →

ℒKL(y , x, 𝜃; 𝛽) =
K∑︁

c=1
ℐ(y = 𝜔c) · KL[Dir(𝜇|𝛽(c))||p(𝜇|x; 𝜃)]

∙ ... or reverse KL-Divergence →

ℒRKL(y , x, 𝜃; 𝛽) =
K∑︁

c=1
ℐ(y = 𝜔c) · KL[p(𝜇|x; 𝜃)||Dir(𝜇|𝛽(c))]
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Reminder - Kullback-Leibler Divergence

∙ Standard “measure” between distributions

KL[Ptr(y |x)||P(y |x; 𝜃)] = EPtr(y |x)
[︀
ln Ptr(y |x) − ln P(y |x; 𝜃)

]︀
∙ Variational optimization often yields reverse KL for training

KL[P(y |x; 𝜃)||Ptr(y |x)] = EP(y |x ;𝜃)
[︀
ln P(y |x; 𝜃) − ln Ptr(y |x)

]︀
∙ Measures have different properties →

∙ Forward KL is zero-avoiding
∙ Reverse KL is zero-forcing
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Forward KL-divergence Loss [Malinin and Gales, 2018]

∙ Consider expectation of forward KL-div loss wrt. empirical distribution p̂(x, y) →

ℒKL(𝜃; 𝛽) = Ep̂tr(x ,y)
[︁ K∑︁

c=1
ℐ(y = 𝜔c) · KL[Dir(𝜇|𝛽(c))||p(𝜇|x; 𝜃)]

]︁

= Ep̂tr(x)
[︁ K∑︁

c=1
EP̂tr(y |x)[ℐ(y = 𝜔c)] · KL[Dir(𝜇|𝛽(c))||p(𝜇|x; 𝜃)]

]︁

= Ep̂tr(x)
[︁
KL

[︀ K∑︁
c=1

Ptr(y = 𝜔c) · Dir(𝜇|𝛽(c))||p(𝜇|x; 𝜃)
]︀]︁

+ C

∙ Target distribution becomes a mixture of Dirichlets!
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Forward KL-divergence Loss [Malinin and Gales, 2018]

∙ Target distribution becomes a mixture of Dirichlets!

(a) Indueced Target (b) Model (c) Want

∙ Forward KL-divergence is zero avoiding → Model will try to cover each mode!
∙ Leads to undesired behaviour → bad performance!
∙ Doesn’t scale to datasets with more than 10 classes!
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Reverse KL-divergence Loss [Malinin and Gales, 2019]

∙ Consider expectation of reverse KL-div loss wrt. empirical distribution p̂(x, y) →

ℒRKL(𝜃; 𝛽) = Ep̂tr(x)
[︁ K∑︁

c=1
P̂tr(y = 𝜔c |x)KL

[︀
p(𝜇|x; 𝜃)||Dir(𝜇|𝛽(c))

]︀]︁

= Ep̂tr(x)
[︁
Ep(𝜇|x ;𝜃)

[︀
ln p(𝜇|x; 𝜃) − ln

K∏︁
c=1

Dir(𝜇|𝛽(c))P̂tr(y=𝜔c |x)]︀]︁

= Ep̂tr(x)
[︁
KL

[︀
p(𝜇|x; 𝜃)||Dir(𝜇|

K∑︁
c=1

P̂tr(y = 𝜔c |x) · 𝛽(c))
]︀]︁

+ C

∙ Expectation induces product of target Dirichlet distributions.
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Reverse KL-divergence Loss [Malinin and Gales, 2019]

∙ Expectation induces product of target Dirichlet distributions

ℒRKL(𝜃; 𝛽) = Ep̂tr(x)
[︁
KL

[︀
p(𝜇|x; 𝜃)||Dir(𝜇|

K∑︁
c=1

P̂tr(y = 𝜔c |x) · 𝛽(c))
]︀]︁

+ C

∙ Target becomes a uni-modal Dirichlet distribution at appropriate location!

(a) Induced Target (b) Model
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Prior Network Construction

∙ Reverse KL loss ℒRKL(𝜃, 𝒟; 𝛽) → full control over behaviour of model!

ℒ(𝜃, 𝒟; 𝛽in, 𝛽out , 𝛾) =ℒRKL
in (𝜃, 𝒟trn; 𝛽in) + 𝛾 · ℒRKL

out (𝜃, 𝒟out ; 𝛽out)

(a) In-Domain Target (b) OOD Target

∙ But how to obtain out-of-domain training data 𝒟out?
∙ Use a different dataset or adversarial attacks
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Prior Network Construction

∙ Out-of-domain (OOD) training data must be on boundary on in-domain region →
∙ Too loose → Some OOD might be considered in-domain
∙ Too tight → Some in-domain might be considered OOD

(a) Too Loose (b) Too Tight (c) Good
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Prior Networks trained with forward KL-divergence loss on Artificial Data

(a) Total Uncertainty (b) Data Uncertainty (c) Knowledge Uncertainty
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Prior Networks trained with reverse KL-divergence loss on Artificial Data

(a) Total Uncertainty (b) Data Uncertainty (c) Knowledge Uncertainty
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Classification Error Rate

Dataset DNN PN-KL PN-RKL Ensemble

CIFAR-10 8.0 14.7 7.5 6.6
CIFAR-100 30.4 - 28.1 26.9
TinyImageNet 41.7 - 40.3 36.9
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Out-of-Distribution Detection

Model CIFAR-10/CIFAR-100 CIFAR-100/TinyImageNet

SVHN LSUN TinyImageNet SVHN LSUN CIFAR-10

Ensemble 89.5 93.2 90.3 78.9 85.6 76.5
PN-KL 97.8 91.6 92.4 - - -
PN-RKL 98.2 95.7 95.7 84.8 100.0 57.8

Table: Out-of-domain detection results (mean % AUROC across 10 rand. inits).
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Overview of the Talk
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Adversarial Attack Detection

∙ Adversarial Attacks → Small perturbation of the input x* which affects prediction
∙ Exist for many modalities → images, text and audio
∙ Transferable between models
∙ Can be deployed in real world.

∙ Adversarial Attacks are a security concern!
∙ Detect using measures of uncertainty?
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Adversarial Attack Generation

∙ Adversarial attacks: generate sample x̃:
1. swaps to target class 𝜔̃
2. requires minimum changes to original sample x

∙ Requirements expressed as

𝒜adv(x, 𝜔̃) = arg min
x̃∈ℛD

{︁
ℒ

(︀
y = 𝜔̃, x̃, 𝜃

)︀}︁
: 𝛿(x, x̃) < 𝜖

∙ 𝜖 is number of swapped bits (for images)
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Manifold Interpretation of Adversarial Attacks
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Adversarial Attack Detection

∙ Consider an uncertainty based detection scheme:

ℐ̂T (x) =

⎧⎪⎪⎨⎪⎪⎩
1, T > ℋ(x)
0, T ≤ ℋ(x)
0, x = ∅

∙ Successful attacks are able to :
∙ Both affect prediction and avoid detection.

∙ Can assess using false positive and true positives:

tp(T ) = 1
N

N∑︁
i=1

ℐT (x i), fp(T ) = 1
N

N∑︁
i=1

ℐT (𝒜adv(x i , 𝜔t))

∙ Joint Success Rate is where tp(T ) = fp(T )
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Adversarial Attack Detection via Prior Networks

∙ Prior Networks yield rich measures of uncertainty
∙ Greatly constrain space of successful adaptive attacks

∙ Confidence → constraint on max logit
∙ Total Uncertainty → constraint on relative of magnitude of logits
∙ Knowledge Uncertainty → constraint on relative and absolute magnitude of logits
∙ .. and attack must also affect predicted class!

∙ Explicit control behaviour via training data →
∙ Further constrain space of successful adversarial solutions
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Prior Network Adversarial Training

ℒ(𝜃, 𝒟; 𝛽nat , 𝛽adv ) =ℒRKL
nat (𝜃, 𝒟trn; 𝛽nat = 1e2) + 𝛾 · ℒRKL

adv (𝜃, 𝒟adv; 𝛽adv = 1)

(a) Natural Target (b) Adversarial Target

∙ Standard adversarial training →
∙ Correct Prediction for adversarial inputs

∙ Prior Network adversarial training →
∙ Correct Prediction + High Uncertainty for adversarial inputs
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Experiments

∙ Baselines: MC-Dropout and Standard Adversarial Training
∙ Prior Network adversarial traning → 1-step FGSM attacks
∙ Evaluation Attack → strong adaptive whitebox PGD-MIM attack
∙ Datasets: CIFAR10 and CIFAR100
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Joint Success Rate - CIFAR10
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Joint Success Rate - CIFAR100
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Thank You!

Any questions?
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